Southwest Pennsylvania July 2011

Property Owner: Hainy Sample ID: SWPAGW11

Sample ID: SWPAGW11 Property Owner: Stacy Hainy

Sample Date: 07/28/2011

	Analyte	Units	Result	Qualifier	MCL*
General Chemistry					
	рН	pH units	7.11		
	SPECIFIC CONDUCTIVITY	mS/cm	0.608		
	TOTAL DISSOLVED SOLIDS	mg/L	395		
	OXIDATION REDUCTION POTENTIAL	mV	68		
	DISSOLVED OXYGEN	mg/L	0.19		
	TEMPERATURE	degrees Celsius	16.6		
	TURBIDITY	NTU	4.5		
	CHLORIDE	mg/L	16.7		
	BROMIDE	mg/L	2.40		
	FLUORIDE	mg/L	0.10	J	4
	SULFATE	mg/L	98.9		
	HYDROGEN SULFIDE	mg S/L	<0.01	U	
	NITRATE + NITRITE	mg N/L	0.38	В	10
	FERROUS IRON	mg Fe ²⁺ /L	<0.03	U	
	AMMONIA	mg N/L	<0.10	U	
	DISSOLVED ORGANIC CARBON	mg/L	0.65		
	DISSOLVED INORGANIC CARBON	mg/L	80.1		
	ALKALINITY	mg CaCO ₃ /L	264		
	ANION-CATION BALANCE	%	2.3		

Field-determined concentrations of ferrous iron and hydrogen sulfide are screening values.

Volatile Organics

1,1,1-TRICHLOROETHANE
1,1,2-TRICHLOROETHANE
1,1-DICHLOROETHANE
1,1-DICHLOROETHENE
1,2,3-TRIMETHYLBENZENE

μg/L	<0.5	U	200
μg/L	R	R	5
μg/L	<0.5	U	
μg/L	R	R	7
μg/L	<0.5	U	

^{*}Maximum contaminant level

Sample ID: SWPAGW11 Property Owner: Stacy Hainy

Sample Date: 07/28/2011

	Analyte	Units	Result	Qualifier	MCL*
Volatile Organics	1,2,4-TRIMETHYLBENZENE	μg/L	<0.5	U	
	1,2-DICHLOROBENZENE	μg/L	<0.5	U	600
	1,2-DICHLOROETHANE	μg/L	<0.5	U	5
	1,3,5-TRIMETHYLBENZENE	μg/L	<0.5	U	
	1,3-DICHLOROBENZENE	μg/L	<0.5	U	
	1,4-DICHLOROBENZENE	μg/L	<0.5	U	75
	ACETONE	μg/L	<1.0	U	
	ACRYLONITRILE	μg/L	<25	U	
	BENZENE	μg/L	<0.5	U	5
	CARBON DISULFIDE	μg/L	<0.5	U	
	CARBON TETRACHLORIDE	μg/L	<0.5	U	5
	CHLOROBENZENE	μg/L	<0.5	U	100
	CHLOROFORM	μg/L	<0.5	U	80
	CIS-1,2-DICHLOROETHENE	μg/L	<0.5	U	70
	DIISOPROPYL ETHER	μg/L	<1.0	U	
	ETHANOL	μg/L	<100	U	
	ETHYL TERT-BUTYL ETHER	μg/L	<1.0	U	
	ETHYLBENZENE	μg/L	<1.0	U	700
	ISOPROPANOL	μg/L	<25	U	
	ISOPROPYLBENZENE	μg/L	<0.5	U	
	M+P XYLENE	μg/L	<2.0	U	10000
	METHYL TERT-BUTYL ETHER	μg/L	<1.0	U	
	METHYLENE CHLORIDE	μg/L	<1.0	U	5
	NAPHTHALENE	μg/L	<0.5	U	
	O-XYLENE	μg/L	<0.5	U	10000
	STYRENE	μg/L	<0.5	U	100
	TERT-AMYL METHYL ETHER	μg/L	<1.0	U	
	TERT-BUTYL ALCOHOL	μg/L	<5.0	U	
	TETRACHLOROETHENE	μg/L	<0.5	U	5

^{*}Maximum contaminant level

Sample ID: SWPAGW11 Property Owner: Stacy Hainy

Sample Date: 07/28/2011

	Analyte	Units	Result	Qualifier	MCL*
Volatile Organics	TOLUENE	μg/L	<0.5	U	1000
	TRANS-1,2-DICHLOROETHENE	μg/L	<0.5	U	100
	TRICHLOROETHENE	μg/L	<0.5	U	5
	VINYL CHLORIDE	μg/L	<0.5	U	2

(R) Data rejected. 1,1,2-trichloroethane is subject to alkaline hydrolysis to 1,1-dichloroethene. This reaction could be supported by the sample preservative (trisodium phosphate).

Semivolatile Organics

1 2 4 TDICHI ODODENZENE
1,2,4-TRICHLOROBENZENE
1,2-BENZPHENANTHRACENE
1,2-DICHLOROBENZENE
1,2-DINITROBENZENE
1,3 -DINITROBENZENE
1,3-DICHLOROBENZENE
1,3-DIMETHYLADAMANTANE
1,4-DICHLOROBENZENE
1,4-DINITROBENZENE
1-METHYLNAPHTHALENE
2,3,4,6-TETRACHLOROPHENOL
2,3,5,6-TETRACHLOROPHENOL
2,4,5-TRICHLOROPHENOL
2,4,6-TRICHLOROPHENOL
2,4-DICHLOROPHENOL
2,4-DIMETHYLPHENOL
2,4-DINITROPHENOL
2,4-DINITROTOLUENE
2,6-DINITROTOLUENE
2-BUTOXYETHANOL
2-CHLORONAPHTHALENE

μg/L	<0.50	J-,U	70
μg/L	<0.50	J-,U	
μg/L	<0.50	J-,U	600
μg/L	<0.50	J-,U	
μg/L	<0.50	J-,U	75
μg/L	<0.50	J-,U	
μg/L	<5.0	J-,U	
μg/L	<0.50	J-,U	
μg/L	<0.50	J-,U	
μg/L	1.99	J-	
μg/L	<0.50	J-,U	

^{*}Maximum contaminant level

Sample ID: SWPAGW11 Property Owner: Stacy Hainy

Sample Date: 07/28/2011

	Analyte	Units	Result	Qualifier	MCL*
Semivolatile Organics	2-CHLOROPHENOL	μg/L	<0.50	J-,U	
	2-METHYLNAPHTHALENE	μg/L	<0.50	J-,U	
	2-METHYLPHENOL	μg/L	<0.50	J-,U	
	2-NITROANILINE	μg/L	<0.50	J-,U	
	2-NITROPHENOL	μg/L	<0.50	J-,U	
	3&4-METHYLPHENOL	μg/L	<0.50	J-,U	
	3,3'-DICHLOROBENZIDINE	μg/L	<1.00	J-,U	
	3-NITROANILINE	μg/L	<0.50	J-,U	
	4,6-DINITRO-2-METHYLPHENOL	μg/L	<0.50	J-,U	
	4-BROMOPHENYL PHENYL ETHER	μg/L	<0.50	J-,U	
	4-CHLORO-3-METHYLPHENOL	μg/L	<0.50	J-,U	
	4-CHLOROANILINE	μg/L	<1.00	J-,U	
	4-CHLOROPHENYL PHENYL ETHER	μg/L	<0.50	J-,U	
	4-NITROANILINE	μg/L	<0.50	J-,U	
	4-NITROPHENOL	μg/L	<2.50	J-,U	
	ACENAPHTHENE	μg/L	<0.50	J-,U	
	ACENAPHTHYLENE	μg/L	<0.50	J-,U	
	ADAMANTANE	μg/L	<0.50	J-,U	
	ANILINE	μg/L	<1.00	J-,U	
	ANTHRACENE	μg/L	<0.50	J-,U	
	AZOBENZENE	μg/L	<0.50	J-,U	
	BENZO(A)ANTHRACENE	μg/L	<0.50	J-,U	
	BENZO(A)PYRENE	μg/L	<0.50	J-,U	0.2
	BENZO(B)FLUORANTHENE	μg/L	<0.50	J-,U	
	BENZO(G,H,I)PERYLENE	μg/L	<0.50	J-,U	
	BENZO(K)FLUORANTHENE	μg/L	<0.50	J-,U	
	BENZOIC ACID	μg/L	<5.00	J-,U	
	BENZYL ALCOHOL	μg/L	<0.50	J-,U	
	BIS-(2-CHLOROETHOXY)METHANE	μg/L	<0.50	J-,U	

*Maximum contaminant level

Sample ID: SWPAGW11 Property Owner: Stacy Hainy

Sample Date: 07/28/2011

	Analyte	Units	Result	Qualifier	MCL*
Semivolatile Organics	BIS-(2-CHLOROETHYL)ETHER	μg/L	<0.50	J-,U	
	BIS-(2-CHLOROISOPROPYL)ETHER	μg/L	<0.50	J-,U	
	BIS(2-ETHYLHEXYL) ADIPATE	μg/L	<1.00	J-,U	400
	BIS-(2-ETHYLHEXYL) PHTHALATE	μg/L	<1.00	J-,U	6
	BUTYL BENZYL PHTHALATE	μg/L	2.16	J-	
	CARBAZOLE	μg/L	<0.50	J-,U	
	DIBENZ(A,H)ANTHRACENE	μg/L	<0.50	J-,U	
	DIBENZOFURAN	μg/L	<0.50	J-,U	
	DIETHYL PHTHALATE	μg/L	<0.50	J-,U	
	DIMETHYL PHTHALATE	μg/L	<0.50	J-,U	
	DI-N-BUTYL PHTHALATE	μg/L	<0.50	J-,U	
	DI-N-OCTYL PHTHALATE	μg/L	<0.50	J-,U	
	DIPHENYLAMINE	μg/L	<0.50	J-,U	
	FLUORANTHENE	μg/L	<0.50	J-,U	
	FLUORENE	μg/L	<0.50	J-,U	
	HEXACHLOROBENZENE	μg/L	<0.50	J-,U	1
	HEXACHLOROBUTADIENE	μg/L	<1.00	J-,U	
	HEXACHLOROCYCLOPENTADIENE	μg/L	<0.50	J-,U	50
	HEXACHLOROETHANE	μg/L	<1.00	J-,U	
	INDENO(1,2,3-CD)PYRENE	μg/L	<0.50	J-,U	
	ISOPHORONE	μg/L	<0.50	J-,U	
	NAPHTHALENE	μg/L	<0.50	J-,U	
	NITROBENZENE	μg/L	<0.50	J-,U	
	N-NITROSODIMETHYLAMINE	μg/L	<0.50	J-,U	
	N-NITROSODI-N-PROPYLAMINE	μg/L	<0.50	J-,U	
	PENTACHLOROPHENOL	μg/L	<1.00	J-,U	1
	PHENANTHRENE	μg/L	<0.50	J-,U	
	PHENOL	μg/L	1.31	J-	
	PYRENE	μg/L	<0.50	J-,U	

^{*}Maximum contaminant level

Sample ID: SWPAGW11 Property Owner: Stacy Hainy

Sample Date: 07/28/2011

	Analyte	Units	Result	Qualifier	MCL*
Semivolatile Organics	PYRIDINE	μg/L	<0.50	J-,U	
	R-(+)-LIMONENE	μg/L	<0.50	J-,U	
	SQUALENE	μg/L	<1.00	J-,U	
	TERPINIOL	μg/L	<0.50	J-,U	
	TRI-(2-BUTOXYETHYL) PHOSPHATE	μg/L	<1.00	J-,U	

Dissolved Gases

METHANE	mg/L	<0.0015	U	
ETHANE	mg/L	<0.0029	U	
PROPANE	mg/L	<0.0041	U	
BUTANE	mg/L	<0.0055	U	

Glycols

2-BUTOXYETHANOL	μg/L	<5	J-,U	
DIETHYLENE GLYCOL	μg/L	<50	J-,U	
TETRAETHYLENE GLYCOL	μg/L	<25	J-,U	
TRIETHYLENE GLYCOL	μg/L	<5	J-,U	

The method used for glycol analysis is under development.

Low Molecular Weight Acids

ACETATE	
BUTYRATE	
FORMATE	
ISOBUTYRATE	
LACTATE	
PROPIONATE	

mg/L	R	R	
mg/L	<0.10	U	
mg/L	0.31		
mg/L	<0.10	U	
mg/L	<0.10	U	
mg/L	<0.10	U	

(R) Data rejected. Acetate contamination in samples and blanks is due to the sample preservative (trisodium phosphate).

^{*}Maximum contaminant level

Sample ID: SWPAGW11 Property Owner: Stacy Hainy

Sample Date: 07/28/2011

	Analyte	Units	Result	Qualifier	MCL*
Extractable Petroleum					
Hydrocarbons	DIESEL RANGE ORGANICS	μg/L	73.8	J-	
	GASOLINE RANGE ORGANICS/TOTAL PETROLEUM HYDROCARBONS	μg/L	<20.0	U	

Dissolved Metals

DISSOLVED ALUMINUM
DISSOLVED ANTIMONY
DISSOLVED ARSENIC
DISSOLVED BARIUM
DISSOLVED BERYLLIUM
DISSOLVED BORON
DISSOLVED CADMIUM
DISSOLVED CALCIUM
DISSOLVED CHROMIUM
DISSOLVED COBALT
DISSOLVED COPPER
DISSOLVED IRON
DISSOLVED LEAD
DISSOLVED LITHIUM
DISSOLVED MAGNESIUM
DISSOLVED MANGANESE
DISSOLVED MOLYBDENUM
DISSOLVED NICKEL
DISSOLVED PHOSPHORUS
DISSOLVED POTASSIUM
DISSOLVED SELENIUM
DISSOLVED SILICON
DISSOLVED SILVER

μg/L R R Î μg/L R R Î μg/L 34 J 2000 μg/L 34 J 2000 μg/L 40 U 4 μg/L 4333 U 5 mg/L 102 100 100 μg/L 1 J 100 μg/L 9 J 1300 μg/L 9 J 1300 μg/L 23 J 15 μg/L NA NA NA NA mg/L 27.5 15 15 μg/L 484 U 15 15 μg/L 484 U 15 15 15 μg/L 400 U 50 10				
μg/L <20	μg/L	<494	U	
μg/L 34 J 2000 μg/L <10	μg/L	R	R	Î
μg/L <10	μg/L	<20	U	10
μg/L <333	μg/L	34	J	2000
μg/L <4	μg/L	<10	U	4
mg/L 102 μg/L <7 U 100 μg/L 1 J μg/L 9 J 1300 μg/L 23 J μg/L <17 U 15 μg/L NA mg/L NA mg/L 27.5 μg/L 299 μg/L <17 U μg/L 417 U μg/L 299 μg/L <17 U μg/L 30 U mg/L 430 U 50 mg/L 430 J	μg/L	<333	U	
μg/L	μg/L	<4	U	5
μg/L μg/L μg/L μg/L 23 μg/L μg/L γ17 μg/L γ17 μg/L γ17 μg/L γ15 μg/L γ27.5 μg/L γ299 μg/L γ299 μg/L γ30 μg/L γ	mg/L	102		
μg/L 9 J 1300 μg/L 23 J μg/L <17 U 15 μg/L NA mg/L 27.5 μg/L 299 μg/L <17 U μg/L <17 U μg/L 34 U μg/L <84 U mg/L <0.06 U mg/L 1.54 J μg/L <30 U 50 mg/L 6.69 J	μg/L	<7	U	100
μg/L 23 J μg/L <17 U 15 μg/L NA mg/L 27.5 μg/L 299 μg/L <17 U μg/L <17 U μg/L <30 U mg/L μg/L <30 U 50 mg/L 6.69 J	μg/L	1	J	
μg/L <17 U 15 μg/L NA mg/L 27.5 μg/L 299 μg/L <17 U μg/L <17 U μg/L <84 U mg/L <0.06 U mg/L 1.54 J μg/L <30 U 50 mg/L 6.69 J	μg/L	9	J	1300
μg/L NA mg/L 27.5 μg/L 299 μg/L <17 U μg/L <84 U mg/L <0.06 U mg/L 1.54 J μg/L <30 U 50 mg/L 6.69 J	μg/L	23	J	
mg/L 27.5 μg/L 299 μg/L <17 U μg/L <84 U mg/L <0.06 U mg/L 1.54 J μg/L <30 U 50 mg/L 6.69 J	μg/L	<17	U	15
μg/L 299 μg/L <17 U μg/L <84 U mg/L <0.06 U mg/L 1.54 J μg/L <30 U 50 mg/L 6.69 J	μg/L	NA		
μg/L <17 U μg/L <84 U mg/L <0.06 U mg/L 1.54 J μg/L <30 U 50 mg/L 6.69 J	mg/L	27.5		
μg/L <84 U mg/L <0.06 U mg/L 1.54 J μg/L <30 U 50 mg/L 6.69 J	μg/L	299		
mg/L <0.06 U mg/L 1.54 J μg/L <30 U 50 mg/L 6.69 J	μg/L	<17	U	
mg/L 1.54 J μg/L <30 U 50 mg/L 6.69 J	μg/L	<84	U	
μg/L <30 U 50 mg/L 6.69 J	mg/L	<0.06	U	
mg/L 6.69 J	mg/L	1.54	J	
ŭ	μg/L	<30	U	50
μg/L <14 U	mg/L	6.69	J	
	μg/L	<14	U	

^{*}Maximum contaminant level

Sample ID: SWPAGW11 Property Owner: Stacy Hainy

Sample Date: 07/28/2011

	Analyte	Units	Result	Qualifier	MCL*
Dissolved Metals	DISSOLVED SODIUM	mg/L	11.3	J	
	DISSOLVED STRONTIUM	μg/L	310		
	DISSOLVED SULFUR	mg/L	31.4	J	
	DISSOLVED THALLIUM	μg/L	R	R	2
	DISSOLVED THORIUM	μg/L	NA		
	DISSOLVED TITANIUM	μg/L	<7	U	
	DISSOLVED URANIUM	μg/L	NA		30
	DISSOLVED VANADIUM	μg/L	<10	U	
	DISSOLVED ZINC	μg/L	34	J	

(R) Data rejected. Potential spectral (mass or emission) interference.

Total Metals

TOTAL ALUMINUM
TOTAL ANTIMONY
TOTAL ARSENIC
TOTAL BARIUM
TOTAL BERYLLIUM
TOTAL BORON
TOTAL CADMIUM
TOTAL CALCIUM
TOTAL CHROMIUM
TOTAL COBALT
TOTAL COPPER
TOTAL IRON
TOTAL LEAD
TOTAL LITHIUM
TOTAL MAGNESIUM
TOTAL MANGANESE

μg/L	<548	U	
μg/L	R	R	Î
μg/L	<22	U	10
μg/L	35	J	2000
μg/L	<11	U	4
μg/L	<370	U	
μg/L	<4	U	5
mg/L	103	J	
μg/L	<8	U	100
μg/L	<4	U	
μg/L	<22	U	1300
μg/L	48	J	
μg/L	<19	U	15
μg/L	NA		
mg/L	28.1	J	
μg/L	330	J	

^{*}Maximum contaminant level

Sample ID: SWPAGW11 Property Owner: Stacy Hainy

Sample Date: 07/28/2011

	Analyte	Units	Result	Qualifier	MCL*
Total Metals	TOTAL MOLYBDENUM	μg/L	<19	U	
	TOTAL NICKEL	μg/L	<93	U	
	TOTAL PHOSPHORUS	mg/L	<0.07	U	
	TOTAL POTASSIUM	mg/L	1.63	J	
	TOTAL SELENIUM	μg/L	<33	U	50
	TOTAL SILICON	mg/L	6.46	J	
	TOTAL SILVER	μg/L	<16	U	
	TOTAL SODIUM	mg/L	11.7	J	
	TOTAL STRONTIUM	μg/L	319	J	
	TOTAL SULFUR	mg/L	28.8	J	
	TOTAL THALLIUM	μg/L	R	R	2
	TOTAL THORIUM	μg/L	NA		
	TOTAL TITANIUM	μg/L	<8	U	
	TOTAL URANIUM	μg/L	NA		30
	TOTAL VANADIUM	μg/L	<11	U	
	TOTAL ZINC	μg/L	34	J	

(R) Data rejected. Potential spectral (mass or emission) interference.

Isotopes

 $\delta^{13}C$ DISSOLVED INORGANIC CARBON $\delta^{13}C$ METHANE $\delta^{2}H$ METHANE $\delta^{18}O$ WATER $\delta^{2}H$ WATER

%	-14.28	
%	NR	
%	NR	
%	-7.59	
‰	-54.07	
Atom Ratio	0.712993	

FUX]ca YH]W

GROSS ALPHA GROSS BETA RADIUM - 226 RADIUM - 228

⁸⁷Sr/⁸⁶Sr

pCi/L	NA	15
pCi/L	NA	
pCi/L	NA	Combined
pCi/L	NA	5

*Maximum contaminant level

Analytes and Parameters

Field Parameters

Temp	Temperature	
SPC	Specific Conductivity	
TDS	Total Dissolved Solids (calculated from SPC)	
DO	Dissolved Oxygen	
pH	Hydrogen Ion Activity	
ORP	Oxidation/Reduction Potential	
Fe ²⁺	Ferrous Iron	
H ₂ S	Hydrogen Sulfide	
Alkalinity	Capacity to Neutralize Acids	
Turbidity	Measurement of relative clarity of water	

Anions and Ammonia

Br ⁻	Bromide
Cl	Chloride
SO ₄ ²⁻	Sulfate
F ⁻	Fluoride
NO ₃ ⁻ + NO ₂ ⁻	Nitrate + Nitrite
NH ₃	Ammonia

Carbon Group

DOC	Dissolved Organic Carbon
DIC	Dissolved Inorganic Carbon

Isotopes and Dissolved Gases

He	Helium
H ₂	Hydrogen
Ar O ₂	Argon
O ₂	Oxygen
CO ₂	Carbon dioxide
N ₂	Nitrogen
CO C ₁ C ₂	Carbon monoxide
C ₁	Methane
C_2	Ethane
C ₂ H ₄	Ethene
C ₃	Propane
C ₃ H ₆	Propylene
iC ₄	Isobutane
nC ₄	Normal Butane
iC ₅	Isopentane
nC ₅	Normal Pentane
C ₆ +	Hexane Plus
$\delta^{13}C_1$	[(¹³ C/ ¹² C)Sample-Stan./(¹³ C/ ¹² C)Stan.] * 1000
δDC ₁	[(2H/H)Sample-Stan./(2H/H)Stan.] * 1000
$\delta^{13}C_2$	[(¹³ C/ ¹² C)Sample-Stan./(¹³ C/ ¹² C)Stan.] * 1000
δ ¹³ C DIC	[(¹³ C/ ¹² C)Sample-Stan./(¹³ C/ ¹² C)Stan.] * 1000
δ ³⁴ S (in sulfide and sulfate)	[(³⁴ S/ ³² S)Sample-Stan./(³⁴ S/ ³² S)Stan.] * 1000
δ ¹⁸ O (in sulfate)	[(¹⁸ O/ ¹⁶ O)Sample-Stan./(¹⁸ O/ ¹⁶ O)Stan.] * 1000
BTU	British Thermal Unit

Metals

Metals		
Ag	Silver	
Al	Aluminum	
As	Arsenic	
В	Boron	
Ва	Barium	
Ве	Beryllium	
Ca	Calcuim	
Cd	Cadmium	
Co	Cobalt	
Cr	Chromium	
Cu	Copper	
Fe	Iron	
K	Potassium	
Li	Lithium	
Mg	Magnesium	
Mn	Manganese	
Мо	Molybdenum	
Na	Sodium	
Ni	Nickel	
Р	Phosphorus	
Pb	Lead	
S	Sulfur	
Sb	Antimony	
Se	Selenium	
Si	Silicon	
Sr	Strontium	
Th	Thorium	
Ti	Titanium	
TI	Thallium	
U	Uranium	
V	Vanadium	
Zn	Zinc	

Radiometric*

Ra-226	Radium-226
Ra-228	Radium-228
Gross Alpha	Gross alpha particle activity

Strontium Isotopes

Sr	Strontium
Rb	Rubidium

Extractable Petroleum Hydrocarbons

DRO	Diesel Range Organics
GRO	Gasoline Range Organics

^{*}These analyte groups were not analyzed in this sampling event.

Analytes and Parameters

Water Isotopes

$\delta^2 H$	[(2H/H)Sample-Stan./(2H/H)Stan.] * 1000
δ ¹⁸ O	[(¹⁸ O/ ¹⁶ O)Sample-Stan./(¹⁸ O/ ¹⁶ O)Stan.] * 1000

Low Molecular Weight Acids CAS Number Lactate 50-21-5 Formate 64-18-6 Acetate 64-19-7 Propionate 79-09-4 Isobutyrate 79-31-2 Butyrate 107-92-6

Dissolved Gases

	CAS Number
Methane	74-82-8
Ethane	74-84-0
Propane	74-98-6
Butane	106-97-8

Surfactants*

	CAS Number
Octylphenol ethoxylate	9002-93-1
Nonylphenol ethoxylate	26027-38-3
Ethoxylated alcohol C12	
Ethoxylated alcohol C13	
Ethoxylated alcohol C14	
Nonylphenol	25154-52-3
Octylphenol	27193-28-8

Acrylamide*

	CAS Number
Acrylamide	79-06-1

Glycols

	CAS Number
2-butoxyethanol	111-76-2
Diethylene glycol	111-46-6
Triethylene glycol	112-27-6
Tetraethylene glycol	112-60-7

Volatile Organic Compounds (VOC)

	, (· · · ·)
	CAS Number
ethanol	64-17-5
isopropanol	67-63-0
acrylonitrile	107-13-1
styrene	100-42-5
acetone	67-64-1
tert-butyl alcohol	75-65-0
methyl tert-butyl ether	1634-04-4
diisopropyl ether	108-20-3
ethyl tert-butyl ether	637-92-3
tert-amyl methyl ether	994-05-8
vinyl chloride	75-01-4
1,1-dichloroethene	75-35-4
carbon disulfide	75-15-0
methylene chloride	75-09-2
trans-1,2-dichloroethene	156-60-5
1,1-dichloroethane	75-34-3
cis-1,2-dichoroethene	156-59-2
chloroform	67-66-3
1,1,1-trichloroethane	71-55-6
carbon tetrachloride	56-23-5
benzene	71-43-2
1,2-dichloroethane	107-06-2
trichloroethene	79-01-6
toluene	108-88-3
1,1,2-trichloroethane	79-00-5
tetrachloroethene	127-18-4
chlorobenzene	108-90-7
ethylbenzene	100-41-4
m+p xylene	108-38-3,106-42-3
o-xylene	95-47-6
isopropylbenzene	98-82-8
1,3,5-trimethylbenzene	108-67-8
1,2,4-trimethylbenzene	95-63-6
1,3-dichlorobenzene	541-73-1
1,4-dichlorobenzene	106-46-7
1,2,3-trimethylbenzene	526-73-8
1,2-dichlorobenzene	95-50-1
naphthalene	91-20-3

^{*}These analyte groups were not analyzed in this sampling event.

Analytes and Parameters

Semivolatile Organic Compounds (sVOC)

	CAS Number
R-(+)-limonene	5989-27-5
1,2,4-trichlorobenzene	120-82-1
1,2-dichlorobenzene	95-50-1
1,2-dinitrobenzene	528-29-0
1,3-dichlorobenzene	541-73-1
1,3-dimethyladamantane	702-79-4
1,3-dinitrobenzene	99-65-0
1,4-dichlorobenzene	106-46-7
1,4-dinitrobenzene	100-25-4
1-methylnaphthalene	90-12-0
2,3,4,6-tetrachlorophenol	58-90-2
2,3,5,6-tetrachlorophenol	935-95-5
2,4,5-trichlorophenol	95-95-4
2,4,6-trichlorophenol	88-06-2
2,4-dichlorophenol	120-83-2
2,4-dimethylphenol	105-67-9
2,4-dinitrophenol	51-28-5
2,4-dinitrotoluene	121-14-2
2,6-dinitrotoluene	606-20-2
2-butoxyethanol	111-76-2
2-chloronaphthalene	91-58-7
2-chlorophenol	95-57-8
2-methylnaphthalene	91-57-6
2-methylphenol	95-48-7
2-nitroaniline	88-74-4
2-nitrophenol	88-75-5
3&4-methylphenol	108-39-4 & 106-44-5
3,3'-dichlorobenzidine	91-94-1
3-nitroaniline	99-09-2
4,6-dinitro-2-methylphenol	534-52-1
4-bromophenyl phenyl ether	101-55-3
4-chloro-3-methylphenol	59-50-7
4-chloroaniline	106-47-8
4-chlorophenyl phenyl ether	7005-72-3
4-nitroaniline	100-01-6
4-nitrophenol	100-02-7
Acenaphthene	83-32-9
Acenaphthylene	208-96-8
Adamantane	281-23-2
Aniline	62-53-3
Anthracene	120-12-7
Azobenzene	103-33-3
Benzo(a)anthracene	56-55-3

Semivolatile	Organic Com	pounds (sVOC)
--------------	--------------------	---------------

	CAS Number
Benzo(a)pyrene	50-32-8
Benzo(b)fluoranthene	205-99-2
Benzo(g,h,i)perylene	191-24-2
Benzo(k)fluoranthene	207-08-9
Benzoic Acid	65-85-0
Benzyl alcohol	100-51-6
Bis-(2-chloroethoxy)methane	111-91-1
Bis-(2-chloroethyl)ether	111-44-4
Bis-(2-chloroisopropyl)ether	108-60-1
Bis-(2-ethylhexyl) adipate	103-23-1
Bis-(2-ethylhexyl) phthalate	117-81-7
Butyl benzyl phthalate	85-68-7
Carbazole	86-74-8
Chrysene or 1,2-benzphenanthracene	218-01-9
Dibenz(a,h)anthracene	53-70-3
Dibenzofuran	132-64-9
Diethyl phthalate	84-66-2
Dimethyl phthalate	131-11-3
Di-n-butyl phthalate	84-74-2
Di-n-octyl phthalate	117-84-0
Diphenylamine	122-39-4
Fluoranthene	206-44-0
Fluorene	86-73-7
Hexachlorobenzene	118-74-1
Hexachlorobutadiene	87-68-3
Hexachlorocyclopentadiene	77-47-4
Hexachloroethane	67-72-1
Indeno(1,2,3-cd)pyrene	193-39-5
Isophorone	78-59-1
Naphthalene	91-20-3
Nitrobenzene	98-95-3
N-nitrosodimethylamine	62-75-9
N-nitrosodi-n-propylamine	621-64-7
Pentachlorophenol	87-86-5
Phenanthrene	85-01-8
Phenol	108-95-2
Pyrene	129-00-0
Pyridine	110-86-1
Squalene	111-02-4
Terpiniol	98-55-5
tri-(2-butoxyethyl) phosphate or 2-butoxyethanol phosphate	78-51-3

Hydraulic Fracturing Sampling and Analytical QA/QC Definitions

Sampling and Analytical QA/QC Terms	Definition	
Equipment Blank	A sample of analyte-free media which has been used to rinse sampling equipment or has been filtered in the same manner as filtered samples to check effectiveness of decontamination procedures.	
Field Blank	Blank prepared in the field by filling a clean container with de-ionized water and appropriate preservative, if any, for the specific sampling activity being undertaken.	
Field Duplicate	Independent samples which are collected as close as possible to the same point in space and time. They are two separate samples taken from the same source, stored in separate containers, and analyzed independently. These duplicates are useful in documenting the precision of the sampling process.	
Holding Time	The period of time a sample may be stored prior to its required analysis. While exceeding the holding time does not necessarily negate the veracity of analytical results it causes the qualifying or "flagging" of any data not meeting all of the specified acceptance criteria.	
Laboratory Blank	An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried throug the complete sample preparation and analytical procedure. The method blank is used document contamination resulting from the analytical process.	
Laboratory Control Sample (LCS)	A known matrix spiked with compound(s) representative of the target analytes. This is used to document laboratory performance.	
Matrix Spike (MS)	An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.	
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	Intralaboratory split samples spiked with identical concentrations of target analyte(s). The spiking occurs prior to sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.	
The minimum concentration of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of substance that can be measured and reposition of a substance that can be measured and reposition of the substance that can be measured and reposition of substance that can be measured and reposition of the substance that can be measured and reposition of the substance that can be measured and reposition of substance that can be measured and reposition of substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and reposition of a substance that can be measured and repos		
Quantitation Limit (QL)	The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. The QL is generally 5 to 10 times the MDL. However, it may be nominally chosen within these guidelines to simplify data reporting. For many analytes, the QL analyte concentration is selected as the lowest non-zero standard in the calibration curve. (If dilution of a sample is necessary, the QL of all compounds is elevated by the dilution factor, regardless of their presence or absence. Dilution may be necessary to either bring high concentration target analytes into calibration range or to reduce the interference effects from a high concentration of nontarget compounds on the analyte of interest.)	
Trip Blank	A sample of analyte-free media taken from the laboratory to the sampling site and returned to the laboratory unopened. A trip blank is used to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organics samples.	

References

 $http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/chap1.pdf \\ http://www.epa.gov/superfund/programs/clp/download/ism/ism12e-h.pdf$

Data Qualifiers

Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the reported quantitation limit (QL).
J	The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the QL).
J+	The result is an estimated quantity, but the result may be biased high.
J-	For both detected and non-detected results, the result is estimated but may be biased low.
В	The analyte is found in a blank sample above the QL and the concentration found in the sample is less than 10 times the concentration found in the blank.
Н	The sample was prepared or analyzed beyond the specified holding time. Sample results may be biased low.
*	Relative percent difference of a field or lab duplicate is outside acceptance criteria.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and/or meet quality control criteria. Sample results are not reported. The analyte may or may not be present in the sample.

Data Descriptors

Descriptor	Definition
NA	Not Applicable (See QAPP)
NR	Not Reported by Laboratory or Field Sampling Team
ND	Not Detected
NS	Not Sampled

Note:

If the analyte concentration was less than the Quantitation Limit (<QL), then the B qualifier was not applied.

If both an analyte and an associated blank concentration are between the MDL and QL, then the sample results are reported as <QL and qualified with U.

For samples associated with high Matrix Spike recoveries, the J+ qualifier was not applied if the analyte was less than the Quantitation Limit (<QL).

For samples associated with low Matrix Spike recoveries, the J- qualifier was applied to the analyte with low recovery regardless of analyte concentration (< or > QL).

The Agency is dedicated to delivering high quality data. This is the expectation for EPA's Hydraulic Fracturing research study which is considered to be a Highly Influential Scientific Assessment (HISA). To meet the level of quality and rigor required by HISAs, the data have undergone thorough data validation procedures. Through this process, data quality issues were identified and appropriately noted with data qualifiers. Metals were analyzed by two methods (ICP-OES and ICP-MS). EPA is reporting metals data that were analyzed by ICP-OES. Quality concerns were encountered with the ICP-MS results and were therefore rejected.

[†] A scientific assessment is considered to be highly influential if the EPA or OMB's Office of Information and Regulatory Affairs Administrator determine that the dissemination could have a potential impact of more than \$500 million in any one year on either the public or private sector OR that the dissemination is novel, controversial, or precedent-setting, or has significant interagency interest.

Key for Sample ID Numbers

ID	Definition
SWPA	Sample site
GW	Ground water sample
SW	Surface water sample
01	Sampling location
0711	Sample month and year
d	Field Duplicate

Example Sample ID			
SWPAGW04-0711			
SWPA GW 04 -0711			
Sample	Ground	Compling	Sample
Site = SW	Water	Sampling Location	month and
PA	Sample		year